project on transformer

File:Transformer-hightolow-ironcore.png - Wikimedia Commons
Today we will see how to make project on 'project on transformer' this project is only for class 12th student and this project is belongs to 'physics' in this project we will cover following steps

1. AIM OF PROJECT

2. INTRODUCTION

3. THEORY

4. APPARATUS REQUIRED

5. PROCEDURE FOLLOWED

6. USES OF TRANSFORMERS

7. CONCLUSION

8. PRECAUTIONS

9. SOURCES OF ERROR


10. BIBILIOGRAPHY


                            AIM

To investigate the relation between the ratio of –
1. Input and output voltage.
2. Number of turnings in the secondary coil and primary coil of a self made transformer.


                      Introduction

The transformer is a device used for converting a low alternating voltage to a high alternating voltage or vice-versa.

A Transformer based on the Principle of mutual induction according to this principle, the amount of magnetic flux linked with a coil changing, an e.m.f is induced in the neighboring coil.

A transformer is an electrical device which is used for changing the A.C. voltages. A transformer is most widely used device in both low and high current circuit. As such transformers are built in an amazing strength of sizes. In electronic, measurement and control circuits, transformer size may be so small that it weight only a few tens of grams where as in high voltage power circuits, it may weight hundred of tones.

In a transformer, the electrical energy transfer from one circuit to another circuit takes place without the use of moving parts.

A transformer which increases the voltages is called a step-up transformer. A transformer which decreases the A.C. voltages is called a step-down transformer.


Transformer is, therefore, an essential piece of apparatus both for high and low current circuits.


                        Theory

When an altering e.m.f. is supplied to the primary coil p1p2, an alternating current starts falling in it. The altering current in the primary produces a changing magnetic flux, which induces altering voltage in the primary as well as in the secondary. In a good-transformer, whole of the magnetic flux linked with primary is also linked with the secondary, and then the induced e.m.f. induced in each turn of the secondary is equal to that induced in each turn of the primary. Thus if Ep and Es be the instantaneous values of the e.m.f.’s induced in the primary and the secondary and Np and Ns are the no. of turns of the primary secondary coils of the transformer and

dф / dt = rate of change of flux in each turnoff the coil at this instant, we have

Ep = -Np dф/dt
and
Es = -Ns dф/dt

Since the above relations are true at every instant, so by dividing 2 by 1, we get

Es / Ep = - Ns / Np

As Ep is the instantaneous value of back e.m.f induced in the primary coil p1, so the instantaneous current in primary coil is due to the difference (E – Ep ) in the instantaneous values of the applied and back.

e.m.f. further if Rp is the resistance o, p1p2 coil, then the
instantaneous current Ip in the primary coil is given by

Ip = E – Ep / Rp

E – Ep = Ip Rp

Thus back e.m.f = input e.m.f
Hence equation 3 can be written as

Es / Ep = Es / E

= output e.m.f / input e.m.f

= Ns / Np = K


Where K is constant, called turn or transformation ratio.


  IN A STEP DOWN TRANSFORMER



Es < E so K < 1, hence Ns < Np



If

Ip = value of primary current at the same instant
And
Is = value of secondary current at this instant, then
Input power at the instant = Ep Ip
And
Output power at the same instant = Es Is
If there are no losses of power in the transformer, then
Input power = output power
Or
Ep Ip = Es Is
Or
Es / Ep = Ip / Is = K

       IN A STEP UP TRANSFORMER

Es > E so K > 1, hence Ns > Np As, k > 1, so Ip > Is or Is < Ip

i.e. current in secondary is weaker when secondary voltage is higher.

Hence, whatever we gain in voltage, we lose in current in the same ratio.

Similarly it can be shown, that in a step down transformer, whatever we lose in voltage, we gain in current in the same ratio.

Thus a step up transformer in reality steps down the current &a step down transformer steps up the current.


                     EFFICIENCY

Efficiency of a transformer is defined as the ratio of output power to the input power.
i.e.
η = output power / input power = Es Is / Ep Ip
Thus in an ideal transformer, where there is no power losses
, η = 1.
But in actual practice, there are many power losses; therefore the efficiency of transformer is less than one.

            

               ENERGY LOSSES


Following are the major sources of energy loss in a transformer:

1. Copper loss is the energy loss in the form of heat in the copper coils of a transformer. This is due to joule heating of conducting wires.

2. Iron loss is the energy loss in the form of heat in the iron core of the transformer. This is due to formation of eddy currents in iron core. It is minimized by taking laminated cores.

3. Leakage of magnetic flux occurs inspite of best insulations. Therefore, rate of change of magnetic flux linked with each turn of S1S2 is less than the rate of change of magnetic flux linked with each turn of P1P2.

4. Hysteresis loss is the loss of energy due to repeated magnetization and demagnetization of the iron core when A.C. is fed to it.

5. Magneto striation i.e. humming noise of a transformer.

         APPARATUS REQUIRED

                      Reinforcement steel bar. Steel building armature.  

                                         IRON ROD

copper wire 

COPPER WIRE

Ampoules led et a incandescence, voltmetre sur fond blanc

VOLTMETRE

Analog ammeter or voltmeter with dial and arrow on a white background. Side view

AMMETRE



        PROCEDURE FOLLOWED


1.Take thick iron rod and cover it with a thick paper and wind a large number of turns of thin Cu wire on thick paper (say 60). This constitutes primary coil of the transformer.

2. Cover the primary coil with a sheet of paper and wound relatively smaller number of turns (say 20) of thick copper wire on it. This constitutes the secondary coil. It is a step down transformer.

3. Connect p1, p2 to A.C main and measure the input voltage and current using A.C voltmeter and ammeter respectively.

4. Similarly, measure the output voltage and current through s1and s2.

5. Now connect s1and s2to A.C main and again measure voltage and current through primary and secondary coil of step up transformer.

6. Repeat all steps for other self made transformers by changing number of turns in primary and secondary coil.



      USES OF TRANSFORMERS



1. In voltage regulator for T.V., refrigerator, computer, air conditioner, etc.

2. A step down transformer is used for welding purposes.

3. A step down transformer is used for obtaining large current.

4. A step up transformer is used for the production of X-Rays and NEON advertisement.

5. Transformers are used in voltage regulators and stabilized power supplies.

6. Transformers are used in the transmissions of a.c. over long distances.

7. Small transformers are used in Radio sets, telephones, loud speakers and electric bells etc.

               CONCLUSION

1. The output voltage of the transformer across the secondary coil depends upon the ratio (Ns/Np) with respect to the input voltage

2. The output voltage of the transformer across the secondary coil depends upon the ratio (Ns/N p) with respect to the input voltage

3. There is a loss of power between input and output coil of a transformer.

                 PRECAUTIONS

1. Keep safe yourself from high voltage.
2. While taking the readings of current and voltage the A.C should remain constant.

           SOURCES OF ERROR

1. Values of current can be changed due to heating effect.
2. Eddy current can change the readings.

            BIBILIOGRAPHY

1) NCERT textbook class 12
2) NCERT physics lab Manuel
3) INTERNET
4) www.yahoo.com
5) www.scribd.com
6) www.google.com



                       YOU CAN WATCH OUR VIDEO 



                                          you can see our pdf also





        DOWNLOAD PDF --- CLICK HERE


Post a Comment

0 Comments